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A non-catalytic regioselective approach to the synthesis of
(E)-stilbenes from suitably functionalized 2H-pyran-2-onesq
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Abstract—Highly functionalized (E)-stilbenes 3a–m and 4-aryl-6-styryl-pyran-2-ylidineacetonitriles 4a–b have been prepared and
delineated through the ring transformation of 6-aryl-3,4-disubstituted-2H-pyran-2-ones 1 with commercially available (E/Z)-4-
phenyl-3-buten-2-one 2 without the use of any catalyst.
� 2006 Published by Elsevier Ltd.
Numerous hydroxylated stilbenes are present in Nature,
especially in various plant species1 of the vegetable king-
dom. The naturally occurring stilbenoids, polyhydroxy
stilbenes and their glycosides have drawn considerable
attention due to their wide range of pharmacological
activities and therapeutic potential. Resveratrol I, a nat-
ural polyhydroxy stilbene is reported to be beneficial in
the prevention of cardiovascular disease and cancer2 due
to its antioxidant and antimutagenic activities.3 It also
inhibits the dioxygenase activity of lipooxygenase and
protects against platelet aggregation.4,5
HO

OH

OH

(E)-Resveratrol

I

HO

OH

OH

HO

HO

(E)-Viniferin

II
Viniferin II, an oligomer of resveratrol is recognized as a
growth inhibitor of pathogenic fungi. Besides these,
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various stilbene derivatives are also known to display
anti-inflammatory,6 antiviral and antibacterial proper-
ties.7,8 The non-availability of natural stilbenes in suffi-
cient quantities has necessitated the development of a
new efficient synthetic strategy for the preparation of
this class of compounds.

The first synthesis of resveratrol I was reported9 in 1941
and thereafter, the synthesis of this class of compounds
was further developed using various organometallic re-
agents. C@C bond formation had always been a sensi-
tive issue prior to the discovery of the Wittig reaction.
However, its application was limited to carbonyl com-
pounds only. The first significant breakthrough occurred
in 1970 with the discovery of the reductive dimerization
of the C@O group of aldehyde and ketones into olefins,
using low-valent titanium reagents.10 Among various
catalytic approaches for the construction of stilbenoids,
the Heck and Suzuki reactions are prominent and versa-
tile. The Heck reaction11–13 involves Pd(0) or Pd(II)-
complex catalyzed C–C coupling of styrene with an aryl
halide. They are also synthesized by Pd(II) catalyzed
reaction of aryldiazonium salts with vinyltriethoxy-
silane.14 In addition to conventional Heck reactions,
nucleophilic organoboron species have been employed
for the construction of stilbene derivatives. The palla-
dium catalyzed cross coupling of aryl boronic acids with
organic halides or diazonium salts is a highly selective
and effective method for preparing stilbenes.15,16

They are also synthesized through reduction of benzil,
benzoin and deoxybenzoin with zinc under a hydrogen
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atmosphere.17 Oxidative dimerization of methylarenes is
another useful approach for the synthesis of this class of
compounds.18 They are generally prepared by the con-
densation of activated methyl arenes with an aryl
aldehyde.19

Our approach to the regioselective synthesis of stilbenes
3a–m is based on the ring transformation of (i) 6-aryl-4-
methylsulfanyl-2H-pyran-2-one-3-carbonitriles 1a,b, (ii)
methyl 6-aryl-4-methylsulfanyl-2H-pyran-2-one-3-carb-
oxylates 1c–e and (iii) 6-aryl-4-piperidin-1-yl-2H-pyr-
an-2-one-3-carbonitriles 1f–m with 4-phenyl-3-buten-2-
one 2. The precursors 1a–e used for the synthesis of
the stilbenes were prepared20 from the reaction of aryl
methyl ketones and methyl 3,3-dimethylthio-2-cyano/
carbomethoxyacrylate. The 6-aryl-4-piperidin-1-yl-2H-
pyran-2-one-3-carbonitriles 1f–m were obtained21 by
refluxing a mixture of 6-aryl-4-methylsulfanyl-2H-pyr-
an-2-one-3-carbonitriles with piperidine in ethanol for
5 h.

Thus, an equimolar mixture of 2H-pyran-2-one 1, 4-
phenyl-3-buten-2-one 2 and powdered KOH in dry
DMF was stirred at room temperature for 6–8 h. Fol-
lowing complete consumption of the starting material
(TLC), the reaction mixture was poured into ice water
with vigorous stirring. The aqueous solution was
neutralized with 10% aqueous HCl, and the precipitate
obtained was filtered and dried. The crude product,
on purification via column chromatography, yielded
various unsymmetrical stilbene derivatives 3a–m. Our
approach has shown advantages over earlier reported
procedures in terms of regioselectivity as well as an
option for functionalization of the aromatic ring.

The selectivity of the reaction depends upon the presence
of substituents at C-3 and C-4 on the pyran ring. Thus,
the ring transformation of 6-aryl-4-methylsulfanyl-2H-
pyran-2-one-3-carbonitriles 1a,b with 2 may proceed to
yield three possible outcomes, (i) 3-methylsulfanyl-
5-styryl-biphenyl-4-carbonitriles 3a,b following path A,
(ii) 4-phenyl-6-styryl-pyran-2-ylidineacetonitriles 4a,b
through path B, exclusively or (iii) a mixture of 3 and
4. Under our experimental conditions we have been able
to isolate and characterize the product as a mixture of 3
(minor) and 4 (major) but the ring transformation of
1c–e with 2 exclusively gave (E)-stilbenes 3c–e in excel-
lent yields. Thus, a substituent at C-3 of the pyran ring
in reactants 1a–e plays a crucial role in the regioselectiv-
ity, possibly due to the difference in electron withdrawing
strength of the CN and COOCH3 substituents, which
affects the electrophilicity of C-4 of the pyran ring.

The ring transformation of 1f–m with 2 also provides
regioselectively unsymmetrical (E)-stilbenes 3f–m in
good yields even in the presence of a CN substituent
at C-3 of the pyran ring, possibly due to the presence
of the 4-piperidin-1-yl moiety, which reduces the electro-
philicity of C-4.

The topography of 2H-pyran-2-ones 1a–m reveals the
presence of three electrophilic centres C-2, C-4 and C-
6 in which the latter is highly vulnerable to nucleophilic
attack due to extended conjugation and the presence of
an electron-withdrawing substituent at C-3 of the pyran
ring. Thus, the carbanion generated from 4-phenyl-3-
buten-2-one 2 attacks C-6 of the pyran ring of 1 with
ring closure followed by liberation of carbon dioxide
and water to yield products 3. The ring transformation
of 6-aryl-4-methylsulfanyl-2H-pyran-2-one-3-carbonitr-
iles 1a,b with 2, led to a mixture of (E)-3-methylsulfan-
yl-5-styryl-biaryl-4-carbonitriles 3a,b as minor products
and 4-aryl-6-styryl-pyran-2-ylidineacetonitriles 4a,b as
a mixture of (E)- and (Z)-isomers due to the creation
of a new exocyclic C@C bond. The formation of 4
possibly proceeds through the attack of the carbanion



Figure 2. ORTEP diagram of 3c.
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Figure 1. UV spectrum (CHCl3) of 3d.
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from 2 at C-6 followed by decarboxylation and recycli-
zation involving C-4 of the pyran ring and the enolic
OH of the intermediate as depicted in Scheme 1. All
the synthesized compounds were characterized by spec-
troscopic and elemental analysis.22

The stereochemistry of the highly functionalized stil-
benes was determined on the basis of UV and NMR spec-
troscopy. The UV spectrum of 3d in chloroform showed
absorption maxima at �292 nm, which is in proximity
to the reported kmax for (E)-stilbenes23 at 293.8 nm
(Fig. 1).

Finally, the geometry of the products was ascertained by
a single crystal X-ray diffraction study.24 The ORTEP
diagram of 3c is depicted in Figure 2.

Our methodology provides a regioselective approach to
the synthesis of highly functionalized (E)-stilbenes in
one-step from the reaction of suitably functionalized
2H-pyran-2-ones 1 and 4-phenyl-3-buten-2-one 2 with-
out the need for a catalyst. The synthesis is very eco-
nomical and the work-up is very simple.
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